Положение светила относительно сторон горизонта. система координат в астрономии

Главная › Астрономия ›

Занимаясь исследованиями космоса и неба, учёные установили, что всё вокруг находится в движении.История возникновения координат и их системы началась ещё в древности. Очевидно, что разработка системы координат связана с потребностью ориентирования на местности, и пониманием структуры небесной поверхности.

Положение светила относительно сторон горизонта. Система координат в астрономии Небо над облаками

Для определения расположения и перемещения объектов человечество разработало целую систему методов и способов. Более того, придумали специальные числовые и символичные обозначения.На самом деле, систем, определяющих точки положения объектов, несколько. Главным образом отличаются они выбором главной плоскости и пунктом отсчёта.

Так как, наблюдая с Земли, мы видим небо в виде сферы, то координаты в астрономии тоже сферические. Кроме того, они представляют некие дуги кругов сферы. Стоит отметить, что исчисляются они в градусах, иногда в часах.

Горизонтальная система координат

В ней математический горизонт выступает главной плоскостью. А полюса составляют зенит и надир.Горизонтальной системой координат пользуются для наблюдений с Земли. Это возможно и невооружённым глазом, и с помощью телескопа. Наблюдают за звёздами и перемещением объектов на небе. Разумеется, что в рамках Солнечной системы.

Положение светила относительно сторон горизонта. Система координат в астрономии Горизонтальная система координат

Разумеется, наблюдение и измерение происходит постоянно. Потому как движение небесных тел происходит непрерывно.

Некоторые определения в системе координат

Отвесная линия представляет собой прямую, проходящую через центр неба. К тому же она совпадает с течением нити отвеса относительно точки наблюдения. Для наблюдателя данная прямая вертикально пересекает центр планеты и место наблюдения.

Зенит и надир это две противоположности. Как известно, отвесная линия пересекается с небом над головой наблюдателя-это и есть зенит. Собственно, надир оказывается полярной по диаметру точкой.

Математический горизонт является огромным кругом небесной сферической поверхности. Его область перпендикулярна отвесной линии. Что важно, он делит всю поверхность неба пополам. Более того, эти части называют видимой и невидимой для наблюдателя. Первая имеет верхнюю точку в зените, а вторая в надире.

Положение светила относительно сторон горизонта. Система координат в астрономии Математический горизонт, Зенит и надир, Отвесная линия

В то же время, математический горизонт никогда не соответствует видимому горизонту. Так как, во-первых, поверхность Земли неровная. Как следствие, высшая точка наблюдения разная. А во-вторых, по причине искривления лучей в атмосфере нашей планеты.

Горизонтальные координаты в астрономии составляют высота светила и зенитное расстояние. Помимо этого, есть ещё азимут. Высота светила это дуга его вертикала от математического горизонта до направления на само светило. Границы высоты к зениту равны от 0° до +90°.и наоборот к надиру, то есть от 0° до — 90°.

Стоит отметить, что зенитное расстояние это дуга вертикала от зенита до светила. Кстати, рассчитывают зенитный отрезок от зенита к надиру в пределах от 0° до 180°. Азимут, то есть дуга математического горизонта от южной точки до вертикали светила. Притом азимут отсчитывают к западу от южной точки в пределах от 0° до 360°.

А именно в сторону суточного вращения небесной сферы.

Положение светила относительно сторон горизонта. Система координат в астрономии Азимут

Первая экваториальная система координат

За плоскую область в этой системе берётся поверхность экватора неба, а точка отчёта — Q. Помимо того, координаты представляют склонение и часовой угол. Что такое склонение вы можете узнать тут.

Часовым углом является дуга, которая расположена посередине небесного меридиана и кругом склонения. Граница его измерения от 0° до 360°.Надо сказать, что применяется первая экваториальная система координат в связи с постоянным движением нашей планеты в течение суток.

В связи с этим, местом отсчёта установили точку весеннего равноденствия. Так как она является постоянной относительно звёзд.

Положение светила относительно сторон горизонта. Система координат в астрономии Часовой угол

Вторая экваториальная система координат

Что интересно, главная плоскость и точка отчёта аналогичны предыдущей системе. Но её координатами выступают склонение и прямое восхождение. Подразумевается, что восхождение это дуга экватора неба, которая проходит от точки весеннего равноденствия до круга светила.

Кроме того, измерение проходит в часовой мере. Однако, её отсчёт ведётся противоположно часовой стрелки. Между тем, вторая система координат, характеризуется постоянными координатами звёзд. В противовес первой системе, движение Земли за сутки не влияет на них.

Применяется она для определения перемещения небесных тел за год.

Положение светила относительно сторон горизонта. Система координат в астрономии Вторая экваториальная система координат

Важно понимать, что координаты могут быть всегда разными. Поэтому существует множество задач. Их решение возможно с применением, подходящей отдельной ситуации, системой. Вообще, для решения задач и определении координат, очень часто чередуют системы.

Создание систем координат позволило учёным составить карту звёздного неба. Кроме того, обрисовалась определённая структура небесной системы. Что, в значительной мере, способствовало развитию астрономии и астрологии.

Помимо того, экваториальные системы координат применяются во многих областях научной деятельности.

Положение светила относительно сторон горизонта. Система координат в астрономии Звёздное небо

Очевидно, что разработка и внедрение определённых систем, составляет основу исследования космического пространства. Мы стараемся максимально приблизиться к его пониманию. Конечно, множество уже применяемых приёмов, расчётов и методов способствует расширению нашего кругозора.

Системы координат в астрономии Ссылка на основную публикацию Положение светила относительно сторон горизонта. Система координат в астрономии Положение светила относительно сторон горизонта. Система координат в астрономии

Система небесных координат

1 Основные положения небесной сферы

       Для определения видимого положения небесных тел и изучения их движения в астрономии вводится понятие небесная сфера. Сфера имеет произвольные размеры и произвольный центр. В её центр в точке О помещён наблюдатель, а вращение сферы повторяет вращение небесного свода. Прямая ZOZ′ обозначает отвесную линию для наблюдателя, где бы он не находился.

Верхняя точка над головой наблюдателя Z называется Зенит, а противоположная её точка Z′ — называется Надир. Большой круг SWNE перпендикулярен отвесной линии называется истинным горизонтом или математический горизонт. Математический горизонт делит сферу на две половины, видимую и невидимую для наблюдателя.

Линия РР′ — называется ось мира, вокруг этой оси происходит вращение небесной сферы. Плоскость ЕQWQ′ перпендикулярна к оси мира называется небесный экватор. Он делит небесную сферу на два полушария – северное и южное. Большой круг небесной сферы PZQSP′Z′Q′N называется небесным меридианом.

Небесный меридиан делит небесную сферу на Восточное и Западное полушарие. Линия NOS называется полуденной линией.

Положение светила относительно сторон горизонта. Система координат в астрономии

      Положение основных элементов небесной сферы относительно друг друга зависит от географической широты места наблюдателя. Под углом к плоскости математического горизонта расположена ось мира РР′.

Положения светил на небе определяется по отношению к основным плоскостям и связанным с ними линиями и точками небесной сферы и выражается количественно двумя величинами (центральными углами или дугами больших кругов) которые называются небесными координатами.

2 Горизонтальная система координат

      Основной плоскостью горизонтальной системы координат является математический горизонт NWSE , а отчёт ведётся от Z зенита и от одной из точек математического горизонта. Одной координатной является зенитное расстояние z (Зенитное расстояние к югу zв = φ – δ; к северу zн = 180 — φ – δ) или высота светила над горизонтом h .

Высотой h светила М называется высота вертикального круга mМ от математического горизонта до светила, или центральный угол mOM между плоскостью математического горизонта и направлением на светило М. Высоты отсчитываются от 0 до 90 к зениту и от 0 до -90 к надиру. Зенитным расстоянием светила называется дуга вертикального круга ZM от светила до зенита. z + h = 90 (1).

Положение самого вертикального круга определяется дугой координатной – азимутом А. Азимутом А называется дуга математического горизонта Sm от точки юга S до вертикального круга, проходящего через светило. Азимуты отсчитывается в сторону вращения небесной сферы, т.е. к западу от точки юга, в пределах от 0 до 360.

Система координат используется для непосредственных определений видимых положений светил с помощью угломерных инструментов.

Положение светила относительно сторон горизонта. Система координат в астрономии

3 Первая экваториальная система координат

        Начало отсчёта – точка небесного экватора Q. Одной координатной является склонение. Склонением называется дуга mM часового круга PMmP′ от небесного экватора до светила. Отсчитываются от 0 до +90 к северному полюсу и от 0 до -90 к южному. p + = 90 . Положение часового круга определяется часовым углом t.

Часовым углом светила М называется дуга небесного экватора Qm от верхней точки Q небесного экватора до часового круга PMmP′, проходящего через светило. Часовые углы отсчитываются в сторону суточного обращения небесной сферы, к западу от Q в пределах от 0 до360 или от 0 до 24 часов.

Система координат используется в практической астрономии для определения точного времени и суточного вращения неба. Определяет Суточное движение Солнца, Луны и других светил.

Положение светила относительно сторон горизонта. Система координат в астрономии

4 Вторая экваториальная система координат

Одной координатной является склонение , другой прямое восхождение α. Прямое восхождение α светила М называется дуга небесного экватора ♈m от точки весеннего равноденствия ♈ до часового круга, проходящего через светило.

Отсчитывается в сторону противоположную суточному вращению в пределах от 0 до до 360 или от 0 до 24 часов. Система используется для определения звёздных координат и составления каталогов.

Определяет годичное движение Солнца и других светил.

Положение светила относительно сторон горизонта. Система координат в астрономии

5 Высота полюса мира над горизонтом, высота светила в меридиане

Высота полюса мира над горизонтом всегда равна астрономической широте места наблюдателя:

  1. Если склонение светила меньше географической широты, то оно кульминирует к югу от зенита на z = φ – δ или на высоте h = 90 – φ + δ
  2. Если склонение светила равно географической широте, то оно кульминирует в зените и z = 0, а h = + 90
  3. Если склонение светила больше географической широты, то оно кульминирует к северу от зенита на z = с – φ или на высоте h = 90 + φ – с
  • Положение светила относительно сторон горизонта. Система координат в астрономии
  • 6 Условия для восхода и заката светил
  • Для наблюдателя на полюсах будут только незаходящие светила.
  • Явление пересечения светилом небесного меридиана называется кульминацией светила.
  • Если светило пересекает верхнюю часть меридиана – наступает верхняя кульминация, если нижнюю – нижняя кульминация.
  • Для наблюдателя на полюсах будут только незаходящие светила.
  • Явление пересечения светилом небесного меридиана называется кульминацией светила.
  • Если светило пересекает верхнюю часть меридиана – наступает верхняя кульминация, если нижнюю – нижняя кульминация.

«Любительская астрономия»

Просветительский проект «Курилка Гутенберга» совместно с издательством АСТ запустили издание серии научно-популярных книг под названием «Библиотека Гутенберга». Эти книги в первую очередь рассчитаны на знакомство широкого читателя с основами той или иной научной дисциплины.

Одна из первых в серии — книга Ирины Поздняковой «Любительская астрономия», которая как познакомит читателей с историей важных астрономических открытий, так и подскажет, как самостоятельно приступить к изучению звездного неба.

N + 1 предлагает познакомиться с главой из раздела под названием «Общие рекомендации начинающему наблюдателю».

Положение светила относительно сторон горизонта. Система координат в астрономии

Знакомство со звездным небом

Световое загрязнение

Итак, какие же возможности есть у любителя астрономии в наши дни?

Прежде всего, как и у древних греков, римлян и арабов, у них над головой раскинулся величественный купол небес. Правда, звезды на нем все труднее наблюдать из-за уличного освещения. В городах зачастую доступны глазу лишь самые яркие звезды и планеты, ну и, конечно, Солнце с Луной.

Из-за светового загрязнения сегодня 60% жителей Европы и почти 80% жителей Северной Америки не могут видеть светящуюся полосу Млечного Пути — проекцию на небе диска нашей Галактики.

Когда в 1994 году из-за землетрясения в Лос-Анджелесе отключилось электричество, в полицию полетели массовые сообщения о том, что над городом появилось какое-то странное «гигантское серебристое облако». Оказалось, что это был Млечный Путь, который уже давно исчез с ярко-серого ночного неба мегаполиса…

Однако на территории России еще есть места, где можно увидеть и Млечный Путь, и звезды 6 величины. В целом же, для проведения наблюдений нужно стараться отъехать хотя бы на 20–30 км от города.

Читайте также:  Сколько человек может прожить на одной воде. Как долго человек может протянуть без еды при условии, что у него будет постоянный доступ к воде

Небесная сфера и карты звездного неба

Небо кажется нам огромным куполом, а точнее сферой. В древности, как мы знаем, считалось, что это реальная прозрачная твердая сфера (или несколько сфер), а современные астрономы все еще употребляют понятие «небесная сфера», подразумевая под этим воображаемую сферу, на которую проецируются все видимые светила.

Интересный факт: выражение «седьмое небо» связано как раз с представлениями астрономов, использующих геоцентрическую систему мира.

Со времен древних греков в науке принято деление неба на созвездия. В настоящее время решением Международного астрономического союза небо разделено на 89 участков, носящих имена 88 созвездий (два участка, принадлежащих созвездию Змея, разделены созвездием Змеемосец).

Чуть больше половины из них известны со времен античности и носят в основном мифологические названия. Остальные появились в XVI–XIX вв. Какие-то из созвездий содержат заметные рисунки, образованные яркими звездами, в других неопытный наблюдатель вообще может не разглядеть ни одной звезды.

Но созвездия покрывают собой всю площадь неба: нет ни одного, даже самого маленького участка на нем, который не входил бы в какое-то созвездие.

Для наблюдений любителю астрономии необходимы карты звездного неба. Они бывают разных типов. На некоторых из них показаны линии, соединяющие яркие звезды созвездий. Такие карты призваны помочь начинающему любителю лучше ориентироваться на небе.

Другие карты не содержат этих линий, но на них нанесены границы созвездий (то есть участки небесной сферы, которые они занимают), а также небесные координаты. На них могут быть обозначены звезды, которые тусклее тех, что видны невооруженным глазом, а также туманности, галактики и звездные скопления.

Такие карты предназначены для наблюдений с помощью телескопа или другого оптического прибора.

Чтобы отыскать на карте, а затем на небе нужную нам звезду или другой объект и навести на него телескоп, необходимо знать систему небесных координат.

Существуют две системы небесных координат: горизонтальная и экваториальная.

В  горизонтальной системе координат положение светила отсчитывается относительно плоскости горизонта.

Основные точки в этой системе координат — стороны света (север, юг, восток и запад), зенит (точка над головой наблюдателя) и надир (точка под ногами).

Положение светила относительно сторон света называют азимутом, а положение относительно горизонта — высотой. И то и другое измеряется в угловых градусах.

Положение светила относительно сторон горизонта. Система координат в астрономии

Горизонтальная система координат

Однако при видимом вращении небесной сферы высота и азимут светил непрерывно меняется, поэтому такая система непригодна для составления карт. Для этого используется экваториальная система координат. Основная плоскость в ней — плоскость небесного экватора, проекция на небесную сферу земного экватора.

Проекции земных полюсов на небесную сферу называются полюсами мира. Вблизи северного полюса мира находится Полярная звезда, которая достаточно ярка — она имеет 2 звездную величину.

Вблизи же южного полюса мира нет таких ярких светил; направление на него можно определить по созвездию Южный Крест, которое расположено намного дальше от него, чем Полярная звезда от Северного.

Кроме того, на небесной сфере есть эклиптика — большой круг, по которому происходит годичное движение Солнца по зодиакальным созвездиям. Эклиптика представляет собой своеобразную проекцию земной орбиты на небесной сфере.

Аналог земной широты называется склонением и отсчитывается от небесного экватора к полюсам мира. Аналог земной долготы отсчитывается от точки весеннего равноденствия — одной из двух точек, где эклиптика пересекается с небесным экватором.

Положение светила относительно сторон горизонта. Система координат в астрономии

Экваториальная система координат

Изменение вида звездного неба в зависимости от места, времени суток и года

Как мы уже знаем, из-за вращения Земли вокруг своей оси звезды непрерывно движутся по небосклону, описывая окружности вокруг полюсов мира.

Если смотреть на их вращение с полюсов Земли, то полюс мира окажется у нас над головой, в зените, а звезды будут двигаться параллельно горизонту, не заходя за него.

Наблюдателю будет доступно только одно полушарие небесной сферы — звезды другого никогда не восходят над горизонтом.

На экваторе Земли картина совсем иная. Через зенит проходит линия небесного экватора, а оба полюса мира лежат на линии горизонта в точках севера и юга. Все звезды восходят и заходят, двигаясь по небу под прямым углом к горизонту. По мере вращения небесной сферы в течение года на экваторе мы можем видеть над горизонтом все звезды обоих небесных полушарий.

В средних географических широтах Земли картина промежуточная между полюсом и экватором. Полюс мира виден на высоте, равной географической широте места (скажем, для Москвы это 56°).

Небесный экватор наклонен к горизонту и приподнимается над ним тем выше, чем ближе местность к географическому экватору, и тем больше звезд другого полушария мы можем видеть.

Часть звезд на небе восходят и заходят, а часть, расположенная близко к полюсу мира, в так называемой околополярной зоне, не заходят. Граница зоны незаходящих звезд уменьшается по мере приближения к экватору и опускания полюса мира к горизонту.

Помимо вращения вокруг своей оси, Земля движется по орбите вокруг Солнца, которое тоже видно на фоне звездного неба. Конечно, днем мы не можем видеть звезды возле Солнца, но на потемневшем небе те из них, которые расположены ближе всего к нему, первыми заходят ранним вечером и последними восходят перед рассветом.

Но по мере движения Земли каждый день Солнце немного смещается на небе, и звезды видно уже немного в другом месте. За сутки оно проходит по эклиптике путь примерно в 1 угловой градус.

Чтобы повернуться на такой угол, Земле требуется 4 минуты. И значит, звезды восходят и заходят каждые сутки на 4 минуты раньше, при этом вечерние звезды приближаются к Солнцу, а утренние — отдаляются от него.

(На языке астрономов: звездные сутки на 4 минуты короче солнечных).

Все это приводит к тому, что каждые 2 недели время восходов и заходов звезд смещается на 1 час, а за месяц — на 2 часа. В одно и то же время суток одни созвездия сместятся к западу, другие придут на их место с востока. В итоге через 12 месяцев, после завершения оборота Земли вокруг Солнца, картина звездного неба завершает годичный цикл изменения.

С чего начинать знакомство с созвездиями

Новичку может показаться, что распознать среди множества звезд фигуры созвездий очень трудно. К тому же многие карты звездного неба искажают их очертания из-за специфики картографических проекций.

Но отчаиваться ни в коем случае не надо, опыт приходит со временем, и однажды, после нескольких неудачных попыток, вы увидите то, что искали — и будете удивляться, как можно было это так долго не находить…

Конечно, лучше придерживаться определенного алгоритма знакомства с созвездиями, начиная с самых ярких, заметных и известных, которые могут быть ориентирами и опорными пунктами для поиска других.

Для жителей Северного полушария отправным пунктом может стать околополюсное созвездие Большая Медведица. В  средних широтах оно не заходит за горизонт, и в вечернее время его «ковш» из семи звезд можно найти без особого труда: осенью — невысоко над северным горизонтом, зимой — повыше, в северо-восточной части неба, весной — высоко (для Москвы практически в зените), летом — на северо-западе.

Большая Медведица служит отличным ориентиром для поиска других звезд и созвездий. Наиболее известен способ, как с ее помощью можно найти Полярную звезду — продолжив внешнюю сторону Ковша. Однако, как показано на схеме, с помощью этой примечательной фигуры из звезд можно найти еще много других созвездий.

Отталкиваясь от «ковша» Большой Медведицы, вы найдете Полярную звезду и созвездие Малая Медведица, затем в их окрестностях научитесь узнавать созвездия Дракон, Кассиопея, Цефей и Персей, а после Ковш укажет вам и направления на более далекие созвездия Лев, Волопас, Возничий.

Положение светила относительно сторон горизонта. Система координат в астрономии

Способы нахождения созвездий с помощью Ковша Большой Медведицы

Следующий шаг — найти созвездия, которые видны в вечернее время в южной части неба в определенные сезоны года. Осенью выделяются созвездия Пегас и Андромеда, которые вместе тоже напоминают Ковш, но более крупный, чем у Большой Медведицы. Разглядев его, можно искать созвездия Овен и Персей, а потом — более слабые: Рыбы, Треугольник, Кит…

На зимнем небе главная фигура, конечно же, Орион с его блистающим «бантом», украшенным яркими Бетельгейзе и Ригелем и характерным «поясом» из трех звезд.

Продолжив этот «пояс» вверх и вниз, мы найдем другие яркие звезды — Альдебаран из созвездия Телец и Сириус в созвездии Большой Пес.

А дальше можно найти остальные зимние созвездия: как приметные, тоже имеющие в своем составе звезды первой величины и ярче (Близнецы, Возничий, Малый Пес), так и неяркие — Единорог, Заяц.

На весеннем небе главное созвездие — Лев с ярким Регулом. Найдя его, нетрудно затем отыскать другие яркие светила — Арктур из Волопаса и Спику, сияющую в Деве. Затем можно приступить к поиску остальных, намного более тусклых созвездий — Рак, Ворон, Чаша, Гидра, Малый Лев, Секстант, Волосы Вероники.

Летом и осенью в южной части неба выделяются три яркие звезды: Вега, Денеб, Альтаир. Это главные звезды созвездий Лира, Лебедь и Орел, но вместе их называют Осенне-летним треугольником.

С него и нужно начинать знакомство с летним небом, а затем искать остальные летние созвездия — Северную Корону, Геркулес, Змееносец со Змеей, Скорпион, Стрелец, Козерог, Водолей, Лисичка, Дельфин, Стрела, Щит…

В Интернете можно найти онлайн-карты звездного неба, показывающие его вид как на текущий момент, так и на любой день и час в прошлом или будущем. Одна из таких карт находится вот тут.

Для более полного знакомства с небом, а также для удобства, можно установить на компьютер, телефон или планшет программу-планетарий. Например, среди начинающих любителей астрономии популярен бесплатный планетарий Stellarium.

Эта программа позволяет смоделировать множество явлений и реалистично показать их.

Существуют и другие виртуальные планетарии с самыми разными функциями и возможностями, и каждый может выбрать для себя тот, который отвечает его запросам.

Оптические приборы для астрономических наблюдений

Время древних астрономов с угломерными инструментами давно прошло, и любителю астрономии, если он не хочет ограничиваться чтением книг, просмотром фильмов и поиском созвездий по карте, необходим оптический прибор.

Если вы увлеклись астрономией лишь недавно и не имели до того опыта наблюдений, оптимальным вариантом первого прибора для вас станет не крупный телескоп, а бинокль.

Он легче и компактнее телескопа и прекрасно подойдет для общего знакомства с небом, Млечным Путем, яркими туманностями и звездными скоплениями, крупными деталями на поверхности Луны.

Также с помощью бинокля можно наблюдать и кометы.

Покупая бинокль, обращайте внимание прежде всего на его апертуру (диаметр объектива) и увеличение. Например, бинокль с маркировкой 6×50 — это бинокль с апертурой 50 мм и увеличением 6 крат.

Бывают очень большие бинокли с большим увеличением, например 20×100, но их невозможно использовать, держа в руках, по причине большой тяжести и дрожания изображения (дрожь в руках из-за тяжелого бинокля многократно усиливается большим увеличением).

Поэтому использовать такие громоздкие инструменты можно только со штативом. Оптимальные параметры бинокля для обзоров неба и наблюдений с рук — 7×50 или 8×56.

Конечно, по-настоящему увлеченный любитель вряд ли ограничится одним биноклем, и телескоп закономерно будет следующим этапом.

Любительские телескопы чаще всего принадлежат к двум первым исторически появившимся типам — рефракторам и рефлекторам.

Рефракторы удобны в пользовании благодаря прочной конструкции трубы и ее герметичности, не часто требуют настройки и обслуживания, дают контрастное и четкое изображение, что важно при наблюдении планет. Но есть у рефракторов и недостатки.

Читайте также:  Как заниматься кросс кантри: по шагам

Из-за того, что световые лучи разных участков спектра по-разному преломляются в стекле, изображение в них страдает хроматической аберрацией, то есть окрашено по краям в разные цвета (за исключением дорогих моделей, так называемых апохроматов).

Кроме того, модели с большим диаметром объектива стоят дороже, чем такого же размера телескопы других систем.

Изготовить зеркало проще, чем линзу такого же диаметра, поэтому рефлекторы в среднем стоят дешевле, чем рефракторы. Кроме того, зеркало легче, чем линза, а значит, и вес телескопа будет меньше.

Свободны они и от хроматической аберрации, так как лучи в них не преломляются, а отражаются. Но у рефлекторов тоже есть недостатки.

Изображение в них менее контрастное, чем в рефракторах, из-за потерь света при его отражении на маленьком вторичном зеркале, которое к тому же и не пускает часть света в трубу. Конструкция трубы не герметична, а это значит, что внутрь легко попадает пыль и грязь.

Зеркальное покрытие со временем тускнеет. У рефлекторов наблюдается и аберрация, но другого типа — сферическая (объекты по краям поля зрения выглядят более размытыми, чем в центре). Кроме того, конструкция рефлектора чаще требует юстировки (настройки оптики).

Существуют оптические схемы, в которых применяются и линзы, и зеркала.

Среди любителей известны, например, системы Шмидта-Кассегрена и Максутова-Кассегрена, в которых перед зеркалом установлены корректирующие линзы.

Они свободны от многих недостатков и рефракторов, и рефлекторов, кроме того, имеют короткую герметичную трубу, удобную для транспортировки, но, как правило, стоят дороже как рефракторов, так и рефлекторов.

Выбирая телескоп, нужно, как и в случае с биноклем, четко представлять себе, чего вы от него хотите, а также, что реально можно от него ожидать. Ни один телескоп, даже крупный, не покажет вам таких картинок, как на фотографиях с «Хаббла».

Кроме того, подумайте о том, где вы будете проводить наблюдения.

Если вы живете в зоне интенсивной засветки, то громоздкий инструмент с большой апертурой, стоящий на балконе, все равно не продемонстрирует вам всего, на что он способен, а транспортировать его за город будет сложно, в отличие от более компактного телескопа.

Подробнее читайте: Позднякова, Ирина. Любительская астрономия: люди, открывшие небо / И. Ю. Позднякова. — Москва: Издательство АСТ, 2018. — 334, [2] с. : ил. — (Библиотека Гутенберга).

Заказать эту книгу можно здесь.

Инфофиз — мой мир..

Страница 1 из 5

Наименование разделов и тем Содержание учебного материала, лабораторные  работы и практические занятия, самостоятельная работа обучающихся Объем часов Уровень освоения
Звезды и созвездия. Небесные координаты и  звездные карты. Звезды и созвездия. Видимая звездная величина. Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездные карты. Видимое движение звезд на различных географических широтах. Связь видимого расположения объектов на небе и географических координат наблюдателя. Кульминация светил. Воспроизведение определений терминов и понятий (созвездие, высота и кульминация звезд). Объяснение наблюдаемых невооруженным глазом движения звезд на различных географических широтах. 2 2

Тема 2.1. Звезды и созвездия. Небесные координаты и  звездные карты.

2.1.1. Звезды и созвездия. Видимая звездная величина

Невооруженным глазом видно на небе большое количество звезд. Их так много, что, кажется, не сосчитать, однако звезд, которые видны невооруженным глазом, около трех тысяч. В общем случае на небе можно насчитать до 2500-3000 звезд (в зависимости от вашего зрения) – а всего видимых звезд около 6000.

Вероятно, еще на заре цивилизации люди, стремясь как-то разобраться во множестве звезд и запомнить их расположение, мысленно объединяли их в определенные фигуры. Тысячи лет назад люди глядели на небо, считали звезды и мысленно соединяли их в разнообразные фигуры (созвездия), называя их именами персонажей древних мифов и легенд, животных и предметов.

У разных народов имелись свои мифы и легенды о созвездиях, свои названия, разное их количество. Деления были чисто условны, рисунки созвездия редко соответствовали названной фигуре, однако это существенно облегчало ориентирование по небу. Даже босоногие мальчики в древней Халдее или Шумерах знали небо лучше любого из нас.

 Многие характерные «звездные фигуры» уже в глубокой древности получили имена героев греческих мифов и легенд, а также тех мифических существ, с которыми эти герои сражались.

Так появились на небе Геркулес, Персей, Орион, Андромеда и т. д., а также Дракон, Телец, Кит и т. п. Некоторые из этих созвездий упоминаются в древнегреческих поэмах «Илиада» и «Одиссея».

Их изображения можно видеть в старинных звездных атласах, на глобусах и картах звездного неба (рис. 2.1).

Положение светила относительно сторон горизонта. Система координат в астрономии

Созвездия — это определенные участки звездного неба, разделенные между собой строго установленными границами. Созвездия — область неба с характерной группой звезд и всеми звездами, находящимися внутри его границ. Соседство звезд, кажущиеся, в проекции на небесную сферу.

Старейшие по названиям считаются созвездия зодиакальные – пояс, вдоль которого происходит годичное движение Солнца, а также видимые пути Луны и планет. Так созвездия Телец – было известно > 4000 лет назад, так как в это время в этом созвездии находилась точка весеннего равноденствия.

У разных народов и в разное время был разный принцип деления звезд.

  • 4 век до н.э. был список 809 звезд входящих в 122 созвездия.
  • 18 век – Монголия – было 237 созвездий.
  • 2 век – Птолемей (“Альмагеста”) – описано 48 созвездий.
  • 15-16 век – период великих морских путешествий – описано 48 созвездий южного неба.
  • В Русском звездном атласе Корнелия Рейссига, изданном в 1829г содержались 102 созвездия.

Были попытки переименовать установившиеся созвездия, но не одно название не прижилось у астрономов (так церковь в 1627г издала атлас созвездий «Христианское звездное небо», где им давались названия монархов – Георг, Карл, Людовик, Наполеон).

Многие звездные карты (атласы) 17-19 века содержали названия созвездий и рисунки фигур. Но прижился только один звездный атлас Яна Гевелия (1611-1687, Польша) изданный в 1690г и имеющий не только точное расположение звезд и впервые экваториальных координатах, но и прекрасные рисунки. (видеофильм «Звездный атлас Яна Гевелия»

  • Положение светила относительно сторон горизонта. Система координат в астрономии Созвездия Южного полушария автор Гевелий Ян, Уранография 1690 год
  • Положение светила относительно сторон горизонта. Система координат в астрономии Атласы звёздного неба XVII века
  • Путаница с созвездиями прекращена в 1922г Международный астрономический союз разделил все небо на 88 созвездий, а границы окончательно установлены в 1928 году.
  • Среди всех 88 созвездий известное каждому Большая Медведица — одно из самых крупных.
  • Смотря на небо, нетрудно заметить, что звезды различны по яркости, или, как говорят астрономы, по блеску.

Видимые на небе невооруженным глазом звезды астрономы еще до нашей эры разделили на шесть величин. В 125г до НЭ Гиппарх (180-125, Греция) вводит деление звезд на небе по видимой яркости на звездные величины, обозначив самые яркие — первой звездной величины (1m), а еле видимые – 6m (т. е. разность в 5 звездных величин).

Звездная величина — видимая яркость (блеск) звезды. Звездная величина характеризует не размеры, а только блеск звезд. Чем слабее звезда, тем больше число, обозначающее ее звездную величину.

Когда ученые стали располагать приборами для измерения величины потока света, приходящего от звезд, оказалось, что от звезды первой величины света приходит в 2,5 раза больше, чем от звезды второй величины, от звезды второй величины в 2,5 раза больше, чем от звезды третьей величины, и т. д. Несколько звезд были отнесены к звездам нулевой величины, потому что от них света приходит в 2,5 раза больше, чем от звезд первой величины. А самая яркая звезда всего неба — Сириус (α Большого Пса) получила даже отрицательную звездную величину -1,5.

Было установлено, что поток энергии от звезды первой величины в 100 раз больше, чем от звезды шестой величины. К настоящему времени звездные величины определены для многих сотен тысяч звезд.

  1. Звезды 1-й звездной величины — 1m, наиболее яркие назвали.
  2. Звезды 2-й звездной величины — 2m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 1-й величины
  3. Звезды 3-й звездной величины — 3m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 2-й величины
  4. Звезды 4-й звездной величины — 4m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 3-й величины
  5. Звезды 5-й звездной величины — 5m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 4-й величины

Звезды 6-й звездной величины — 6m, в 2,5 раза (точнее, 2,512) слабее по блеску звезд 5-й величины. Самые слабые по блеску из доступных невооруженному глазу Они слабее звезд 1-й звездной величины в 100 раз.

Всего на небе 22 звезды 1-й звездной величины, но блеск их не одинаков: одни из них несколько ярче 1-й величины, другие слабее.

Так же обстоит дело со звездами 2-й, 3-й и последующих величин, поэтому для точного определения блеска той или иной пришлось ввести дробные числа.

Измерения светового потока от звезд позволяют теперь определить их звездные величины с точностью до десятых и сотых долей.

Самая яркая звезда северного полушария неба Вега имеет блеск 0,14 звездной величины, а самая яркая звезда всего неба Сириус — минус 1,58 звездной величины, Солнце — минус 26,8.

Самые яркие звезды или наиболее интересные объекты из числа более слабых звезд получили собственные имена арабского и греческого происхождения (более 300 звезд имеют имена).

В 1603г Иоганн Байер (1572-1625, Германия) публикует каталог всех видимых звезд и впервые вводит их обозначение буквами греческого алфавита в порядке уменьшения блеска (наиболее яркие). Самые яркие – α, затем β, γ, δ, ε и т.д.

В каждом созвездии звезды обозначаются буквами греческого алфавита в порядке убывания их яркости. Наиболее яркая в этом созвездии звезда обозначается буквой α, вторая по яркости — β и т. д.

Поэтому звезды сейчас обозначаются: Вега (α Лиры), Сириус (α Большого Пса), Полярная (α М. Медведицы). Средняя звезда в ручке ковша Большой Медведицы называется Мицар, что по-арабски означает «конь».

Эта звезда второй величины обозначается ζ Большой Медведицы. Рядом с Мицаром можно видеть более слабую звездочку четвертой величины, которую назвали Алькор — «всадник».

По этой звезде проверяли качество зрения у арабских воинов несколько веков тому назад.

Звезды различаются не только по блеску, но и по цвету.

Они могут быть белыми, желтыми, красными. Чем краснее звезда, тем она холоднее. Солнце относится к желтым звездам.

С изобретением телескопа ученые получили возможность увидеть более слабые звезды, от которых приходит света гораздо меньше, чем от звезд шестой величины.

Шкала звездных величин все дальше и дальше уходит в сторону их возрастания по мере того, как увеличиваются возможности телескопов.

Так, например, хаббловский космический телескоп позволил получить изображение предельно слабых объектов — до тридцатой звездной величины.

Системы небесных координат — это… Что такое Системы небесных координат?

Системы небесных координат используются в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере.

Читайте также:  Как шутить

Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере.

Таким образом, системы небесных координат являются сферическими системами координат, в которых третья координата — расстояние — часто неизвестна и не играет роли. Эти системы отличаются друг от друга выбором основной плоскости и началом отсчёта.

В зависимости от стоя́щей задачи, может быть более удобным использовать ту или иную систему. Наиболее часто используются горизонтальная и экваториальные системы координат. Реже — эклиптическая, галактическая и другие.

Горизонтальная система координат

В этой системе основной плоскостью является плоскость математического горизонта. Одной координатой при этом является либо высота светила h, либо его зенитное расстояние z. Другой координатой является азимут A.

Высотой h светила называется дуга вертикального круга от математического горизонта до светила, или угол между плоскостью математического горизонта и направлением на светило. Высоты отсчитываются в пределах от 0° до +90° к зениту и от 0° до −90° к надиру.

Зенитным расстоянием z светила называется дуга вертикального круга от зенита до светила, или угол между отвесной линией и направлением на светило. Зенитные расстояния отсчитываются в пределах от 0° до 180° от зенита к надиру.

Азимутом A светила называется дуга математического горизонта от точки юга до вертикального круга светила, или угол между полуденной линией и линией пересечения плоскости математического горизонта с плоскостью вертикального круга светила.

Азимуты отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от точки юга, в пределах от 0° до 360°. Иногда азимуты отсчитываются от 0° до +180° к западу и от 0° до −180° к востоку. (В геодезии азимуты отсчитываются от точки севера.

)

Первая экваториальная система координат

В этой системе основной плоскостью является плоскость небесного экватора. Одной координатой при этом является склонение δ (реже — полярное расстояние p). Другой координатой — часовой угол t.

Склонением δ светила называется дуга круга склонения от небесного экватора до светила, или угол между плоскостью небесного экватора и направлением на светило. Склонения отсчитываются в пределах от 0° до +90° к северному полюсу мира и от 0° до −90° к южному полюсу мира.

Полярным расстоянием p светила называется дуга круга склонения от северного полюса мира до светила, или угол между осью мира и направлением на светило. Полярные расстояния отсчитываются в пределах от 0° до 180° от северного полюса мира к южному.

Часовым углом t светила называется дуга небесного экватора от верхней точки небесного экватора (то есть точки пересечения небесного экватора с небесным меридианом) до круга склонения светила, или двугранный угол между плоскостями небесного меридиана и круга склонения светила.

Часовые углы отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от верхней точки небесного экватора, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере).

Иногда часовые углы отсчитываются от 0° до +180° (от 0h до +12h) к западу и от 0° до −180° (от 0h до −12h) к востоку.

Вторая экваториальная система координат

Положение светила относительно сторон горизонта. Система координат в астрономии

Использование экваториальной системы координат.

В этой системе, как и в первой экваториальной, основной плоскостью является плоскость небесного экватора, а одной координатой — склонение β (реже — полярное расстояние p). Другой координатой является прямое восхождение α.

Прямым восхождением (RA,α) светила называется дуга небесного экватора от точки весеннего равноденствия до круга склонения светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга склонения светила. Прямые восхождения отсчитываются в сторону, противоположную суточному вращению небесной сферы, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере).

RA — астрономический эквивалент земной долготы. И RA и долгота измеряют угол восток-запад вдоль экватора; обе меры берут отсчёт от нулевого пункта на экваторе. Для долготы, нулевой пункт — нулевой меридиан; для RA нулевой отметкой является место на небе, где Солнце пересекает небесный экватор в весеннее равноденствие.

Склонение (δ) в астрономии — одна из двух координат экваториальной системы координат. Равняется угловому расстоянию на небесной сфере от плоскости небесного экватора до светила и обычно выражается в градусах, минутах и секундах дуги. Склонение положительно к северу от небесного экватора и отрицательно к югу.

  • Объект на небесном экваторе имеет склонение 0°
  • Склонение северного полюса небесной сферы равно +90°
  • Склонение южного −90°

У склонения всегда указывается знак, даже если склонение положительно.

Склонение небесного объекта, проходящего через зенит, равно широте наблюдателя (если считать северную широту со знаком +, а южную отрицательной).

В северном полушарии Земли для заданной широты φ небесные объекты со склонением δ > 90° − φ не заходят за горизонт, поэтому называются незаходящими.

Если же склонение объекта δ < −90° + φ , то объект называется невосходящим, а значит он ненаблюдаем на широте φ.[1]

Эклиптическая система координат

В этой системе основной плоскостью является плоскость эклиптики. Одной координатой при этом является эклиптическая широта β, а другой — эклиптическая долгота λ.

Эклиптической широтой β светила называется дуга круга широты от эклиптики до светила, или угол между плоскостью эклиптики и направлением на светило. Эклиптические широты отсчитываются в пределах от 0° до +90° к северному полюсу эклиптики и от 0° до −90° к южному полюсу эклиптики.

Эклиптической долготой λ светила называется дуга эклиптики от точки весеннего равноденствия до круга широты светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга широты светила. Эклиптические долготы отсчитываются в сторону видимого годового движения Солнца по эклиптике, то есть к востоку от точки весеннего равноденствия в пределах от 0° до 360°.

Галактическая система координат

В этой системе основной плоскостью является плоскость нашей Галактики. Одной координатой при этом является галактическая широта b, а другой — галактическая долгота l.

Галактической широтой b светила называется дуга круга галактической широты от эклиптики до светила, или угол между плоскостью галактического экватора и направлением на светило.

Галактические широты отсчитываются в пределах от 0° до +90° к северному галактическому полюсу и от 0° до −90° к южному галактическому полюсу.

Галактической долготой l светила называется дуга галактического экватора от точки начала отсчёта C до круга галактической широты светила, или угол между направлением на точку начала отсчёта C и плоскостью круга галактической широты светила. Галактические долготы отсчитываются против часовой стрелки, если смотреть с северного галактического полюса, то есть к востоку от точки начала отсчёта C в пределах от 0° до 360°.

Точка начала отсчёта C находится вблизи направления на галактический центр, но не совпадает с ним, поскольку последний, вследствие небольшой приподнятости Солнечной системы над плоскостью галактического диска, лежит примерно на 1° к югу от галактического экватора. Точку начала отсчёта C выбирают таким образом, чтобы точка пересечения галактического и небесного экваторов с прямым восхождением 280° имела галактическую долготу 32,93192° (на эпоху 2000).

Координаты точки начала отсчёта C на эпоху 2000 в экваториальной системе координат составляют:

Положение светила относительно сторон горизонта. Система координат в астрономии
Положение светила относительно сторон горизонта. Система координат в астрономии

Изменения координат при вращении небесной сферы

Высота h, зенитное расстояние z, азимут A и часовой угол t светил постоянно изменяются вследствие вращения небесной сферы, так как отсчитываются от точек, не связанных с этим вращением. Склонение δ, полярное расстояние p и прямое восхождение α светил при вращении небесной сферы не изменяются, но они могут меняться из-за движений светил, не связанных с суточным вращением.

История и применение

Небесные координаты употреблялись уже в глубокой древности. Описание некоторых систем содержится в трудах древнегреческого геометра Евклида (около 300 до н. э.). Опубликованный в «Альмагесте» Птолемея звёздный каталог Гиппарха содержит положения 1022 звёзд в эклиптической системе небесных координат.

Наблюдения изменений небесных координат привели к величайшим открытиям в астрономии, которые имеют огромное значение для познания Вселенной. К ним относятся явления прецессии, нутации, аберрации, параллакса, собственных движений звёзд и другие.

Небесные координаты позволяют решать задачу измерения времени, определять географические координаты различных мест земной поверхности.

Широкое применение находят небесные координаты при составлении различных звёздных каталогов, при изучении истинных движений небесных тел — как естественных, так и искусственных — в небесной механике и астродинамике и при изучении пространственного распределения звёзд в проблемах звёздной астрономии.

Использование различных систем координат

Горизонтальная система координат используется для определения направления на светило с помощью угломерных инструментов и при наблюдениях в телескоп, смонтированный на азимутальной установке.

Первая экваториальная система координат используется для определения точного времени и при наблюдениях в телескоп, смонтированный на экваториальной установке.

Вторая экваториальная система координат является общепринятой в астрометрии. В этой системе составляются звёздные карты и описываются положения светил в каталогах.

Эклиптическая система координат используется в теоретической астрономии при определении орбит небесных тел.

Примечания

  1. Зигель Ф. Ю. Сокровищница звёздного неба — путеводитель по созвездиям и Луне / Под ред. Г. С. Куликова. — 5-е изд. — М.: Наука, 1986. — С. 57—58. — 296 с. — 200 000 экз.

См. также

Wikimedia Foundation. 2010.

НЕБЕ́СНЫЕ КООРДИНА́ТЫ

Авторы: В. Е. Жаров 

НЕБЕ́СНЫЕ КООРДИНА́ТЫ, чис­ла, опи­сы­ваю­щие по­ло­же­ние све­ти­ла на не­бес­ной сфе­ре. Как пра­ви­ло, ис­поль­зу­ют сфе­рич. сис­те­мы ко­ор­ди­нат, в ко­то­рых по­ло­же­ние на за­дан­ной сфе­ре опи­сы­ва­ет­ся дву­мя уг­ло­вы­ми ве­ли­чи­на­ми.

Ес­ли рас­стоя­ния до све­тил из­вест­ны, то при­ме­ни­мы так­же де­кар­то­вы сис­те­мы ко­ор­ди­нат, но обыч­но вме­сто рас­стоя­ния ука­зы­ва­ет­ся па­рал­лакс не­бес­но­го све­ти­ла. При вы­со­ко­точ­ных из­ме­ре­ни­ях тре­бу­ет­ся учи­ты­вать эф­фек­ты об­щей тео­рии от­но­си­тель­но­сти.

В этом слу­чае по­ло­же­ние све­ти­ла опи­сы­ва­ет­ся от­но­си­тель­но сис­тем от­счёта, яв­ляю­щих­ся со­во­куп­но­стью ко­ор­ди­нат­ных осей и шка­лы вре­ме­ни (вре­мя рас­смат­ри­ва­ет­ся как чет­вёр­тая ко­ор­ди­на­та не­бес­но­го те­ла).

В за­ви­си­мо­сти от вы­бо­ра на­ча­ла от­счё­та раз­ли­ча­ют сле­дую­щие сис­те­мы Н. к.

: то­по­цен­три­че­ские (на­блю­да­тель на­хо­дит­ся на по­верх­но­сти Зем­ли), гео­цен­три­че­ские (на­блю­да­тель – в цен­тре масс Зем­ли), ба­ри­цен­три­че­ские (на­блю­да­тель – в цен­тре масс Сол­неч­ной сис­те­мы) и объ­ек­то­цен­три­че­ские (на­блю­да­тель – в цен­тре масс пла­не­ты, спут­ни­ка и т. п.). Со­от­вет­ст­вен­но в ка­ж­дой сис­теме оп­ре­де­ля­ют­ся шка­лы вре­ме­ни, т. е. вре­мен­нáя ко­ор­ди­на­та. Ма­те­ма­тич. оп­ре­де­ле­ние сис­тем Н. к. и свя­зи ме­ж­ду ни­ми, а так­же оп­ре­де­ле­ние шкал вре­ме­ни и со­от­но­ше­ний ме­ж­ду ни­ми яв­ля­ет­ся за­да­чей сфе­ри­че­ской ас­тро­но­мии. Реа­ли­за­ция сис­тем ко­ор­ди­нат, т. е. при­вяз­ка их к вы­бран­ным не­бес­ным те­лам, – за­да­ча ас­т­ро­мет­рии.

Для оп­ре­де­ле­ния сис­те­мы ко­ор­ди­нат не­об­хо­ди­мо за­дать её на­ча­ло (как пра­ви­ло, это по­ло­же­ние на­блю­да­те­ля) и на­прав­ле­ние осей. За­тем вы­би­ра­ет­ся осн. плос­кость сис­те­мы, про­хо­дя­щая че­рез на­ча­ло ко­ор­ди­нат. От осн.

плос­ко­сти от­счи­ты­ва­ет­ся од­на из сфе­рич. ко­ор­ди­нат. Сис­те­мы ко­ор­ди­нат, при­ме­няе­мые в ас­тро­но­мии, по­лу­чи­ли на­зва­ния по осн. плос­ко­сти сис­те­мы: го­ри­зон­таль­ная, эк­ва­то­ри­аль­ная, эк­лип­ти­че­ская и га­лак­ти­че­ская.

Вы­бран­ным на­прав­ле­ни­ем в этой сис­те­ме яв­ля­ет­ся на­прав­ле­ние от­вес­ной ли­нии; осн. плос­кость сис­те­мы пер­пен­ди­ку­ляр­на от­вес­ной ли­нии. Н. к. све­ти­ла в этой сис­те­ме яв­ля­ют­ся зе­нит­ное рас­стоя­ние $z$ и ази­мут $A$ (рис., а).

Вме­сто $z$ час­то ис­поль­зу­ет­ся др. ко­ор­ди­на­та: вы­со­та $h$ све­ти­ла над го­ри­зон­том, при­чём $z+h=90°$.

Ес­ли све­ти­ло на­хо­дит­ся над го­ри­зон­том, то его зе­нит­ное рас­стоя­ние из­ме­ня­ет­ся от 0° (све­ти­ло в зе­ни­те) до 90° (све­ти­ло в плос­ко­сти го­ри­зон­та). Ес­ли $z>90°$ ($h

Оставьте комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector